107 research outputs found

    From RF-Microsystem Technology to RF-Nanotechnology

    Get PDF
    The RF microsystem technology is believed to introduce a paradigm switch in the wireless revolution. Although only few companies are to date doing successful business with RF-MEMS, and on a case-by-case basis, important issues need yet to be addressed in order to maximize yield and performance stability and hence, outperform alternative competitive technologies (e.g. ferroelectric, SoS, SOI,…). Namely the behavior instability associated to: 1) internal stresses of the free standing thin layers (metal and/or dielectric) and 2) the mechanical contact degradation, be it ohmic or capacitive, which may occur due to low forces, on small areas, and while handling severe current densities.The investigation and understanding of these complex scenario, has been the core of theoretical and experimental investigations carried out in the framework of the research activity that will be presented here. The reported results encompass activities which go from coupled physics (multiphysics) modeling, to the development of experimental platforms intended to tackles the underlying physics of failure. Several original findings on RF-MEMS reliability in particular with respect to the major failure mechanisms such as dielectric charging, metal contact degradation and thermal induced phenomena have been obtained. The original use of advanced experimental setup (surface scanning microscopy, light interferometer profilometry) has allowed the definition of innovative methodology capable to isolate and separately tackle the different degradation phenomena under arbitrary working conditions. This has finally permitted on the one hand to shed some light on possible optimization (e.g. packaging) conditions, and on the other to explore the limits of microsystem technology down to the nanoscale. At nanoscale indeed many phenomena take place and can be exploited to either enhance conventional functionalities and performances (e.g. miniaturization, speed or frequency) or introduce new ones (e.g. ballistic transport). At nanoscale, moreover, many phenomena exhibit their most interesting properties in the RF spectrum (e.g. micromechanical resonances). Owing to the fact that today’s minimum manufacturable features have sizes comparable with the fundamental technological limits (e.g. surface roughness, metal grain size, …), the next generation of smart systems requires a switching paradigm on how new miniaturized components are conceived and fabricated. In fact endowed by superior electrical and mechanical performances, novel nanostructured materials (e.g. carbon based, as carbon nanotube (CNT) and graphene) may provide an answer to this endeavor. Extensively studied in the DC and in the optical range, the studies engaged in LAAS have been among the first to target microwave and millimiterwave transport properties in carbon-based material paving the way toward RF nanodevices. Preliminary modeling study performed on original test structures have highlighted the possibility to implement novel functionalities such as the coupling between the electromagnetic (RF) and microelectromechanical energy in vibrating CNT (toward the nanoradio) or the high speed detection based on ballistic transport in graphene three-terminal junction (TTJ). At the same time these study have contributed to identify the several challenges still laying ahead such as the development of adequate design and modeling tools (ballistic/diffusive, multiphysics and large scale factor) and practical implementation issues such as the effects of material quality and graphene-metal contact on the electrical transport. These subjects are the focus of presently on-going and future research activities and may represent a cornerstone of future wireless applications from microwave up to the THz range

    BCB Based Packaging for Low Actuation Voltage RF MEMS Devices

    Full text link
    This paper outlines the issues related to RF MEMS packaging and low actuation voltage. An original approach is presented concerning the modeling of capacitive contacts using multiphysics simulation and advanced characterization. A similar approach is used concerning packaging development where multi-physics simulations are used to optimize the process. A devoted package architecture is proposed featuring very low loss at microwave range

    DC and radio-frequency transmission characteristics of double-walled carbon nanotubes-based ink

    Get PDF
    In this paper, double-walled carbon nanotubes (DWNTs) network layers were patterned using inkjet transfer printing. The remarkable conductive characteristics of carbon nanotubes (CNTs) are considered as promising candidates for transmission line as well as microelectronic interconnects of an arbitrary pattern. In this work, the DWNTs were prepared by the catalytic chemical vapor deposition process, oxidized and dispersed in ethylene glycol solution. The DWNTs networks were deposited between electrodes contact and then characterized at DC through current-voltage measurements, low frequency, and high frequency by scattering parameters measurements from 40 MHz up to 40 GHz through a vector network analyzer. By varying the number of inkjet overwrites, the results confirm that the DC resistance of DWNTs networks can be varied according to their number and that furthermore the networks preserve ohmic characteristics up to 100 MHz. The microwave transmission parameters were obtained from the measured S-parameter data. An algorithm is developed to calculate the propagation constant "γ", attenuation constant "α" in order to show the frequency dependence of the equivalent resistance of DWNTs networks, which decreases with increasing frequency

    Nanoscale Simulation of Three-contact Graphene Ballistic Junctions

    Get PDF
    In this work, three-terminal ballistic junctions, made of three-branch graphene nanoribbons (GNRs), are considered and simulated at the nanometric scale. The analysis is carried out by a scattering matrix approach, in a discrete formulation optimized for GNR devices. The ballisticity and the scattering properties of the junction contribute to the nonlinear behaviour, as, in fact, a sinusoidal voltage between two GNR branches results in a non-sinusoidal current at the third branch. The input-output characteristic is hardly predictable at the nanoscale, as it depends on several cooperating factors, namely the potential distribution and the geometry of the junction. Several numerical examples are shown to illustrate the above concepts

    Comparative study of RF MEMS micro-contact materials

    Get PDF
    A systematic comparison between several pairs of contact materials based on an innovative methodology early developed at NOVA MEMS is hereby presented. The technique exploits a commercial nanoindenter coupled with electrical measurements, and test vehicles specially designed to investigate the underlying physics driving the surface-related failure modes. The study provides a comprehensive understanding of micro-contact behavior with respect to the impact of low-to-medium levels of electrical current. The decrease of the contact resistance, when the contact force increases, is measured for contact pairs of soft material (Au/Au contact), harder materials (Ru/Ru and Rh/Rh contacts), and mixed configuration (Au/Ru and Au/Ni contacts). The contact temperatures have been calculated and compared with the theoretical values of softening temperature for each couple of contact materials. No softening behavior has been observed for mixed contact at the theoretical softening temperature of both materials. The enhanced resilience of the bimetallic contacts Au/Ru and Au/Ni is demonstrate

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    From RF-microsystem technology to RF-nanotechnology

    Get PDF
    The RF microsystem technology is believed to introduce a paradigm switch in the wireless revolution. Although only few companies are to date doing successful business with RF-MEMS, and on a case-by-case basis, important issues need yet to be addressed in order to maximize yield and performance stability and hence, outperform alternative competitive technologies (e.g. ferroelectric, SoS, SOI,…). Namely the behavior instability associated to: 1) internal stresses of the free standing thin layers (metal and/or dielectric) and 2) the mechanical contact degradation, be it ohmic or capacitive, which may occur due to low forces, on small areas, and while handling severe current densities. The investigation and understanding of these complex scenario, has been the core of theoretical and experimental investigations carried out in the framework of the research activity that will be presented. The reported results encompass activities which go from coupled physics (multiphysics) modeling, to the development of experimental platforms intended to tackles the underlying physics of failure. Several original findings on RF-MEMS reliability in particular with respect to the major failure mechanisms such as dielectric charging, metal contact degradation and thermal induced phenomena have been obtained. The original use of advanced experimental setup (surface scanning microscopy, light interferometer profilometry) has allowed the definition of innovative methodology capable to isolate and separately tackle the different degradation phenomena under arbitrary working conditions. This has finally permitted on the one hand to shed some light on possible optimization (e.g. packaging) conditions, and on the other to explore the limits of microsystem technology down to the nanoscale. At nanoscale indeed many phenomena take place and can be exploited to either enhance conventional functionalities and performances (e.g. miniaturization, speed or frequency) or introduce new ones (e.g. ballistic transport). At nanoscale, moreover, many phenomena exhibit their most interesting properties in the RF spectrum (e.g. micromechanical resonances). In particular owing to their superior electrical and mechanical properties, novel nanostructured materials (e.g. carbon based, as carbon nanotube (CNT) and graphene) may provide an answer to this endeavor. These subjects are the focus of presently on-going and future research activities and may represent a cornerstone of future wireless applications from microwave up to the THz range.La technologie des microsystèmes RF est censé présenter un interrupteur de paradigme dans la révolution du sans fil. Bien que peu d'entreprises sont à ce jour faire des affaires fructueuse avec RF-MEMS, et au cas par cas, des questions importantes devront encore être réglés afin de maximiser le rendement et la performance de stabilité et donc, aux technologies concurrentes alternatives surperformer (par exemple ferroélectrique , SOS, SOI, ...). À savoir l'instabilité de comportement associé à: 1) les contraintes internes des couches minces autoportantes (métal et / ou diélectrique) et 2) la dégradation de contact mécanique, que ce soit ohmique ou capacitif, ce qui peut se produire en raison des forces faibles, sur de petites surfaces, et lors de la manipulation des densités de courant graves. L'enquête et la compréhension de ces scénario complexe, a été au cœur des études théoriques et expérimentales menées dans le cadre de l'activité de recherche qui sera présenté. Les résultats présentés englobent des activités qui vont de la physique couplés (multiphysique) de modélisation, le développement de plates-formes expérimentales destinées à les plaqués Physique sous-jacentes de l'échec. Plusieurs conclusions initiales sur la fiabilité RF-MEMS en particulier à l'égard des principaux mécanismes de défaillance tels que charge diélectrique, la dégradation de contact métallique et les phénomènes induits thermiques ont été obtenus. L'utilisation originale de l'installation expérimentale de pointe (microscopie à balayage de surface, interféromètre profilométrie la lumière) a permis la définition d'une méthodologie innovante capable d'isoler et de se attaquer séparément les différents phénomènes de dégradation dans des conditions de travail arbitraires. Cela a finalement permis d'une part de faire la lumière sur l'optimisation possible (par exemple de l'emballage) conditions, et de l'autre pour explorer les limites de la technologie des microsystèmes jusqu'à l'échelle nanométrique. À l'échelle nanométrique en effet de nombreux phénomènes se produisent et peuvent être exploitées pour soit augmenter les fonctionnalités et performances classiques (par exemple, la miniaturisation, la vitesse ou fréquence) ou introduire de nouvelles (par exemple, transport balistique). À l'échelle nanométrique, en outre, de nombreux phénomènes présentent leurs propriétés les plus intéressantes dans le spectre RF (par exemple les résonances micromécaniques). En particulier en raison de leurs propriétés électriques et mécaniques supérieures, de nouveaux matériaux nanostructurés (par exemple à base de carbone, comme nanotubes de carbone (CNT) et le graphène) peut fournir une réponse à cette entreprise. Ces sujets sont au centre des activités de recherche actuellement en cours et à venir et peuvent représenter une pierre angulaire de futures applications sans fil du micro-ondes jusqu'à la gamme THz
    corecore